
Formalized Proof of Type Safety

of Hoare Type Theory

Evgeny Makarov Christian Skalka

University of Vermont
emakarov@gmail.com skalka@cs.uvm.edu

April 23, 2010

Abstract

We prove type safety of the Hoare Type Theory (HTT), an exten-
sion of Separation Logic and Hoare Logic to higher-order functional pro-
grams. Our proof is rather simple and is based on subject reduction,
unlike previous work on HTT by Birkedal et al., which uses nontrivial
denotational semantics. Further, we formalized our proof in the Coq the-
orem prover. This formalization can be seen as a basis of a platform for
verifying higher-order imperative programs that is alternative to Ynot,
another implementation of HTT in Coq.

1 Background and Contributions

The use of dependent types as expressive specifications for functional programs
is an active topic of research. Unfortunately, research progress in verification of
side-effecting programs has been slower despite the importance of this topic. In
functional programs, limited use of assignment, for example, is both convenient
and common; most dialects of ML include mutable references, and Haskell allows
assignment using monads.

On the other hand, Hoare logic has been used for over forty years to specify
and prove imperative programs. Hoare logic uses formulas, or assertions, of
first-order logic (or some other chosen logic) to describe heaps, i.e., memory
segments. We will write h |= P whenever an assertion P is true on a heap
h. The derivable judgments of Hoare logic are triples {P}M{Q} where M is a
program and P and Q are assertions, called respectively pre- and postconditions.
The triple {P}M{Q} means that if h |= P for some h, then M , starting with h,
works without errors and, if it finishes computation with another heap h′, then
h′ |= Q.

We developed an analog of Hoare logic (and its extension, separation logic [6])
for a small functional programming language with assignments. Our goal was
not the creation of an effective platform for verifying real-life programs; rather,

1

we wanted to come up with “standard,” educational presentation of the logic,
trying to make it resemble the original Hoare logic in clarity, simplicity and,
appeal.

Independently, the Ynot group at Harvard [2] have developed two versions
of the Hoare Type Theory [3, 1] (let’s call them HTT1 and HTT2) with the
goal of bringing together Hoare logic and functional programming. Also, on the
basis of the Coq proof assistant, the group created the environment Ynot for
program verification and reported its use in various verification projects.

We did not judge HTT1 to be a solution to our project because of the
complexity of HTT1. Despite not having the strength of the whole Calculus of
Constructions (CC), the presentation of HTT1 is quite a bit more involved com-
pared to either Hoare logic or Pure Type Systems (the usual way of presenting
CC and similar strong dependently typed systems). The authors admit in [4]
that their “inference rules. . . may look rather unwieldy at first sight, especially
when compared to rules in Hoare or Separation Logic. . . Ynot is really more
closely related to predicate transformers than to Hoare Logic.”

On the other hand, HTT2, which was developed earlier and independently
of our logic, is quite similar to it. We do not claim, therefore, the discovery of
the system. However, we present the following contributions that we believe are
original.

• The proof of the type safety of HTT2 presented in [5] uses realizability
model and is rather complicated. To our knowledge, we give the first
traditional proof of type safety based on subject reduction.

• While Ynot is a shallow embedding of HTT in Coq, we used deep em-
bedding and defined operational semantics of the language, which allowed
formally proving the type safety of HTT in Coq. The complete Coq code
can be downloaded from
http://www.cs.uvm.edu/~skalka/skalka-pubs/coq/HTT/HTT.zip.

• Our formalization adds to Coq only one axiom, Proof Irrelevance (PI),
which is universally considered compatible with Coq and even desirable.
In contrast, Ynot adds about two dozen axioms.

• While the current Ynot may be considered an implementation of HTT2,
whose consistency, as has been said earlier, was proved model-theoretically,
the two systems are not exactly the same. For example, HTT2 is impred-
icative and uses classical logic, while in Coq, impredicativity and classical
logic are incompatible. Also, the behavior of ghost variables in the two
systems is different. In contrast, one can use our system for verifying
programs, and it is precisely this system that is proved sound.

• We discuss some details of inference rules. For example, our change to
the typing rule of the reading operator in HTT2 makes it have truly small
footprint (a desirable property of assertions that describe only the affected
portion of the heap). Similarly, we introduce an existential elimination
rule and discuss the constructive content of the subject reduction theorem.

2

http://www.cs.uvm.edu/~skalka/skalka-pubs/coq/HTT/HTT.zip

Parameters
addr : Type
heap : Type

Record
value := {T : Type, x : T}

Implicit Types
T : Type
h : heap
a : addr
v : value
w : option value

Parameters
emp : heap
∗ : heap→ heap→ heap
freeAddr : heap→ addr
access : heap→ addr→ option value
update : heap→ addr→ option value→ heap

Definitions
a ∈ dom(h) := ∃v. h[a] = Some v
h1 ≡ h2 := ∀a. h1[a] = h2[a]
h1 # h2 := ∀a. ¬(a ∈ dom(h1) ∧ a ∈ dom(h2))

Notations
h[a] := access h a
h[a := w] := update h aw

Axioms
∀h. freeAddr(h) /∈ dom(h)
∀a. a /∈ dom(emp)
∀h, a, w. (updateh aw)[a] = w
∀h, a, a′, w. a 6= a′ → (updateh aw)[a′] = h[a′]
∀h1, h2, a, v. h1 # h2 →

((h1 ∗ h2)[a] = Some v ↔ h1[a] = Some v ∨ h2[a] = Some v)

Figure 1: Heap-related concepts

The rest of the paper is organized as follows. Section 2 describes heaps and
assertions. Section 3 discusses choices about the implementation of HTT (deep
embedding, ghost variables, and so on) and point out specifics of some infer-
ence rules (the ones concerning reading and existential elimination). Section 4
outlines the proof of type safety via subject reduction.

2 Implementation of Separation Logic

2.1 Heaps

The foundation of our implementation of HTT is an embedding of separation
logic into Coq. It is mostly standard but uses Coq modules to separate the
specification of heap-related concepts from their implementation. The module

3

type, or signature, in ML terminology, describing these concepts is shown in
Figure 1. Coq keywords Parameter and Axiom indicate abstract entities whose
definition is provided in a module that realizes the given module type. The
command Implicit Types associates a default type with variables whose name
starts with a given string. For example, unless an explicit type is specified,
bound variables a, a′ and a1 are assigned type addr.

Remark 2.1 (Notations in Figures) To spare the reader from the need to
learn too much concrete syntax of Coq, definitions in figures are shown semi-
formally, using usual mathematical notation whenever possible. Since we are
describing a formalization in Coq, all terms in formulas are typed Coq terms.
When convenient, their types are shown in the superscript.

The module type in Figure 1 provides abstract types addr and heap, as well
as a function access h a, written as h[a], that returns the content stored at the
address a in the heap h. The result has the type option value, where value is a de-
pendent record holding a type T and a term x : T , and the dependent type option
from the standard library has two constructors: Some : ∀T : Type, x : T. optionT
and None : ∀T. optionT . Thus, a heap h can be viewed as a partial function
from addr to value. The domain of h is defined to consist of addresses mapped to
Somew for some w. We assume that heaps are not everywhere defined (in order
to allocate new cells) but are not necessarily finite. The parameter function
freeAddr h returns some unallocated address of h.

The relation ≡, defined in Figure 1, identifies heaps that are extensionally
equal but may be implemented differently. As is standard in separation logic,
two heaps h1 and h2 are called disjoint (written h1 # h2) if their domains are.
The union of two disjoint heaps is denoted h1 ∗h2. All parameter operations on
heaps are required to respect ≡.

2.2 Modularity

The use of modules allows providing different implementations for heaps and
operations on them. We constructed one implementation based on the modular
Coq library FSets of finite sets and maps, which in turn has several implementa-
tions using lists and trees. Besides adding clarity to the proof development, sep-
arating specification and implementation allows choosing data structures used
by OCaml programs extracted from Coq proofs. For example, one may be in-
terested in the function extracted from the Progress statement, which computes
the next state (a pair of a heap and a term). Also, data structures used in the
implementation determine the efficiency of proofs by reflection, where Coq is
used as a programming language to encode decision procedures.

2.3 Separation Logic

Separation logic is an extension of Hoare logic that is especially suitable for
specifying behavior of programs that manipulate pointers to heap, including
dangling pointers, aliasing, and so on. It adds a new binary assertion connective

4

Parameters
HProp : Type
∧∧,∨∨, ∗∗ : HProp→ HProp→ HProp
∃∃ : ∀T. (T → HProp)→ HProp
Emp : HProp
[·] : Prop→ HProp
points : addr→ ∀T. T → HProp

Implicit Types
P,Q,R : HProp

Notation
a 7→T x := points a T x

Parameter
|= : heap→ HProp→ Prop

Definitions
P |= Q := ∀h. h |= P → h |= Q
P =||= Q := P |= Q ∧Q |= P

Axioms (Selection)
∀h. h |= Emp↔ h ≡ emp
∀h, a, T, x : T. h |= a 7→T x↔ h ≡ update emp a (Some {||T, x||})
∀h,A. h |= [A]↔ A
∀h, P1, P2. h |= P1 ∗ P2 ↔
∃h1, h2. h1 # h2 ∧ h ≡ h1 ∗ h2 ∧ h1 |= P1 ∧ h2 |= P2

∀h1, h2, P. h1 ≡ h2 → (h1 |= P ↔ h2 |= P)

Figure 2: Separation logic

∗∗, called separation conjunction, with the following semantics: h |= P1 ∗∗P2

means that h = h1 ∗ h2 for some h1 # h2 and hi |= Pi for i = 1, 2.1

As a calculus of triples, separation logic adds an important Frame rule.

{P}M{Q}
{P ∗∗R}M{Q ∗∗R}

It means that if M converts a heap satisfying P into one satisfying Q, then it
will work similarly when run on a larger heap and won’t touch the excess part.

Figure 2 shows parameters, axioms and definitions related to separation
logic. An abstract type HProp is the type of formulas. Formula semantics is
expressed by the parameter relation |= between heaps and formulas. Several
axioms defining |= are listed in Figure 2. In particular, Emp is true on a heap
with an empty domain, and a 7→T x is true on a heap that maps stores x : T
at a and is otherwise empty. (When there is no confusion, we’ll suppress the
subscript T . In the concrete syntax of Coq, there is no need to write T , either,
since it can be reconstructed as the type of x.) The connectives ∧∧, ∨∨ and ∃∃ are
just regular connectives ∧, ∨ and ∃ lifted from Prop to HProp. The notation [A]

1Separation logic also has an adjoint to ∗∗, called separating implication and denoted −−∗,
but it is not used in this paper.

5

injects a pure proposition A : Prop into HProp. (Note that, unlike the similar
operation in Ynot, h |= [A] does not require that h is empty.)

As other functions on heaps, |= has to respect the relation ≡. This is nec-
essary, for example, to prove P ∗∗Emp =||= P because the heaps h and h ∗ emp,
for example, don’t need to have equal representation. Ynot solves this problem
by defining heaps as functions from addresses to typed values and by using the
functional extensionality axiom. Thus, extensionally equal heaps are related
by Leibniz equality and can replace each other in any context. This provides
the freedom to define HProp simply as heap→ Prop and enable users to define
arbitrary connectives and formulas as predicates on heaps.

In our approach, this is not possible because all connectives must treat heaps
respecting their extensional equality. This explains the need for a parame-
ter type HProp. In our implementation using Coq FSets library, HProp is an
inductive type; this allows proving the last axiom of Figure 2, expressing ex-
tensionality of |=. Note that, similar to Ynot, users are free to inject any Coq
proposition into HProp using square brackets and to define functions that return
values of type HProp.

3 Implementation of HTT

The idea of HTT is to separate pure and effectful terms by creating a monad
labeled with pre- and postconditions.

Definition 3.1 (Specification) Let T : Type, P : HProp and Q : T → HProp.
The expression {P}-{Q} is called a specification, and P and Q are called pre-
and postcondition, respectively. The notation {P}-{x : T | Q}2 stands for
{P}-{λx : T.Q}. (By default, Coq does not identify η-long and η-short term
forms.)

One can implement HTT using either shallow or deep embedding. In the
shallow embedding (the choice of Ynot), {P}-{Q} is a type of sort Type, and
specifications are types of verified programs. One declares or defines operators
(return, do, assign, and so on) having specification types, as well as terms that
do not have computational meaning but that modify specifications (e.g., Frame
rule). To verify that a certain program satisfies a specification {P}-{Q}, one
starts the proof of a theorem {P}-{Q}. The proof term then represents the
program (modulo the presence of noncomputational rules). The user may write
the proof using the refine tactic, giving it as argument the outline of the program;
the rest of the proof would fill in non-computational details.

3.1 Ghost Variables and Computational Irrelevance

The choice of embedding is influenced, in particular, by the implementation of
ghost variables, whose role is relating pre- and postconditions. For example, a

2Coq parser is smart enough to accept precisely this notation.

6

term M : (Πa : addr ∀n : nat. {a 7→ n}-{ : unit | a 7→ n + 1}) increments the
content of the argument address a. Unlike the real argument a, introduced by
Π, M does not receive n at run time.

The ideal solution for ghost variables would be the Implicit Calculus of
Constructions (ICC) by A. Miquel and its decidable variant ICC*, currently
developed by B. Barras (See the discussion on computational irrelevance in
[1, Section 2.1.1].) In addition to regular CC constructs: dependent product
Πx : T.U , abstraction λx : T.M and application MN , ICC* has their im-
plicit counterparts: Π[x : T]. U , λ[x : T].M and M [N]. Implicit arguments
(in brackets) are not supposed to drive the computation but only to assure its
correctness. Correspondingly, the judgment Γ ` λ[x : T].M : Π[x : T]. U can
be derived from Γ, x : T `M : U only when x is not free in M after all implicit
arguments are removed from M .

In regular Coq, there is no fully satisfactory way to simulate this behavior.
The inference rule of CiC that introduces λ-abstraction has the form

Γ ` Πx : T.U : s Γ, x : T `M : U

Γ ` (λx : T.M) : (Πx : T.U)

(The first premise Γ ` Πx : T.U : s ensures that forming a function space with
domain T and codomain U is allowed.) The rule does not make a distinction
between free occurrences of x in M and in U ; both are closed in the conclusion.
Thus, implementing ghost variables with deep embedding, when the program is
a part of the proof-term, presents a problem.

As a “duct-tape” solution, Ynot uses the distinction between sorts Prop and
Set. Types of sort Prop are theorems, while types in Set are computational
data-structures. The Coq principle of PI states that terms that are proofs of
theorems cannot be used for driving programs but only to justify that certain
program steps are valid. One of the manifestations of PI is that inductive types
of sort Prop cannot be taken apart using the built-in match construct if the type
of the overall term is in Set or Type.

Using the inductive type inhabited : Type→ Prop, which has one constructor
inhabits : ∀T, T → inhabitedT , any term of sort Type can be injected into Prop.
The opposite transformation can only occur in the context of building a proof.
Since Ynot specifications, which are types of verified programs, have sort Set,
terms injected into Prop in this way essentially cannot be used by programs and
may only serve in supporting proofs.

This solution has an additional advantage of imposing no restrictions on
the location of implicit universal quantifiers. There are also disadvantages.
One is a small notational overhead: if x : inhabitedT is a ghost variable and
P : T → HProp is a predicate, then one must write x ˜˜ P , which is a notation
for λh. ∃y, x = inhabits y ∧ Pyh, instead of simply Px. A more serious issue is
that this approach requires an axiom ∀T : Set ∀x, y : T. inhabitsx = inhabits y →
x = y. However, this axiom contradicts PI because both terms inhabitsx and
inhabits y have type inhabitedT : Prop, and PI implies inhabitsx = inhabits y.
Thus, in the presence of PI, all terms of the same type, such as true and false,
are provably equal.

7

M,N : Term ::= returnx | do x←M ; TM | new x | read a | assign a x |
free a | if xbool then M else M | f | fix f. TM | appM x

S : Spec ::= {P}-{TQ} | ∀ TS | Πfix TS

Figure 3: Term syntax

Even though PI is not derivable in Coq by itself and is by no means a typical
part of Coq developments, it is implied by classical logic. As a result, the use
of classical logic in Ynot is problematic.

3.2 Ghost Variables and Deep Embedding

Our implementation of ghost variables is different. Instead of making {P}-{Q}
a type, we prove theorems of the form DerivesM {P}-{Q}, denoted by ` M :
{P}-{Q}. Here M , which represent the program under verification, has an
inductive type Term, and {P}-{Q} has type Spec. These inductive types are
shown in Figure 3. The inductive predicate Derives comprising inference rules
of HTT is shown in Figure 4.

Remark 3.2 In Figure 3, we combine type information with the traditional
BNF form. For example, Term is an inductive type, and the default placeholder
for Term is M . When the definition requires a function of some type T → Term
rather than an object of type Term, we write T as the left superscript: TM . The
type of the term itself, if necessary, is shown as the right superscript, as in xbool.

In creating the datatype Term, which is characteristic of deep embedding, we
tried to use as much as possible the functionality already available in Coq, such
as substitutions and unification. We had to implement manually only effectful
operations and recursion (see the discussion below). That’s why, for example,
the reduction rule

(h, do x← returnx; M) . (h,Mx)

from Figure 5 uses regular application instead of manually written substitution
function.

The inductive type Spec in Figure 3 includes a constructor ∀ : (ΠT. (T →
Spec)→ Spec), which is the universal quantifier for ghost variables. For exam-

ple, consider a function S
def
= λn : nat. {a 7→ n}-{a 7→ n + 1} : nat → Spec and

a term M
def
= do x ← read a; assign a (x + 1) : Term. One can prove ` M : ∀S.

The last inference rule would be

Πn : nat. (`M : Sn)

`M : ∀S
(∀I)

Thus, separating the verified program M from the proof-term of the theorem
`M : ∀S, we are able to require that the ghost variable n does not occur in M .

8

Γ ` new x : {emp}-{a : addr | a 7→ x} (New)

Γ ` read a : {a 7→T x}-{y : T | [y = x]∧∧ a 7→T x} (Read)

Γ ` assign a y : {a 7→ x}-{z : unit | a 7→ y} (Assign)

Γ ` free a : {a 7→ x}-{z : unit | emp} (Free)

Γ ` returnxT : {emp}-{x : T | [x = M]∧∧ emp} (Return)

Γ `M : {P}-{x : T | Qx} ∀x : T (Γ ` Nx : {Qx}-{y : U | Ry})
Γ ` do x←M ; N : {P}-{y : U | Ry}

(Do)

Γ `M1 : {[x = true]∧∧P}-{y : T | Qy}
Γ `M2 : {[x = false]∧∧P}-{y : T | Qy}

Γ ` if x then M1 else M2 : {P}-{y : T | Qy}
(If)

Γ(f) = Πx : T. Sx

Γ ` f : Πx : T. Sx
(FVar)

∀x : T (Γ, f : Πy : T. Sy) `Mx : Sx

Γ ` fix f.M : Πx : T. Sx
(FAbs)

Γ `M : Πx : T. Sx y : T

Γ ` appM y : Sy
(FApp)

∀x : T (Γ `M : Sx)

Γ `M : ∀x : T. Sx
(∀I)

Γ `M : ∀x : T. Sx y : T

Γ `M : Sy
(∀E)

Γ `M : {P}-{x : T | Q} P ′ |= P ∀x : T (Qx |= Q′x)

Γ `M : {P ′}-{x : T | Q′}
(Cons)

Γ `M : {P}-{x : T | Qx}
Γ `M : {P ∗R}-{x : T | (Qx) ∗R}

(Frame)

∀x : T (Γ `M : {Px}-{y : U | Qy})
Γ `M : {∃∃x : T. Px}-{y : U | Qy}

(∃E)

Figure 4: Typing rules

An obvious drawback of this implementation of ghost variables is that they
can span only one specification. The same restriction occurs in the type system
from [5], the theoretical model of Ynot. In any case, establishing a link between
a pre- and postcondition of a single specification is arguably the most important
role of ghost variables.

9

(h, new x) . (h ∗ [a 7→ x], a) a = freeAddr(h)
(h, read a) . (h, x) h(a) = Somex

(h, assign a x) . (h[a := Somex], ()) a ∈ dom(h)
(h, free a) . (h[a := None], ()) a ∈ dom(h)

(h, do x← returnx; M) . (h,Mx)
(h, if true then M1 else M2) . (h,M1)
(h, if false then M1 else M2) . (h,M2)

(h, app(fix f.M)x) . (h, (Mx)[fix f.M/f])

(h1,M1) . (h2,M2)

(h1, do x←M1; N) . (h2, do x←M2; N)

(h1,M1) . (h2,M2)

(h1, appM1 x) . (h2, appM2 x)

Figure 5: Reductions

3.3 General Recursion

Coq is strongly normalizing system, which is important for its consistency. To
add general recursion to our language, we had to manually program it. We
added a constructor Πfix : T → Spec denoting a dependent type of a recursive
function. Variables, substitution and application are implemented in a standard
way using de Bruijn indices.

As a result, the general form of the judgment is Γ `M : S where Γ : list Spec,
M : Term and S : Spec.

3.4 Inference Rules

Inference rules of HTT shown in Figure 4 are similar to those in [5] and [1].
We added (∃E) rule, which is analogous to the left existential rule of sequent
calculus. It is very convenient because one often encounters functions with
existentially quantified preconditions. The variable x in (∃E) is similar to ghost
variables because it is not allowed to occur in the program.

Using this rule allowed us formulating rules for heap operations in a truly
small footprint style. For example, the rule for read in [1] looks as follows (after
slightly changing the syntax):

read p : {∃v. p 7→ v ∗∗P (v)}-{v : T | p 7→ v ∗∗P (v)}

Here the presence of an arbitrary predicate P (v) violates small footprint ap-
proach and is not needed in our system.

10

4 Type Safety

In this section, we collect the main statements formally proved in Coq about
HTT.

Definition 4.1 (Nonterminal State) A state is a pair of a heap and a term.
A state (h,M) is called nonterminal if there exists another state (h′,M ′) and
(h,M) . (h′,M ′) according to the rules of Figure 5.

Theorem 4.2 If (h,M) is nonterminal and h # h′, then (h ∗ h′,M) is also
nonterminal.

Definition 4.3 (Nondeterministic Step) Let the relation .′ be like . where
the line for new is replaced by the following one.

(h, new x) .′ (h ∗ [a 7→ x], a) for any a /∈ dom(h)

Thus, the relation . is deterministic, where new cells are allocated according
to the function freeAddr, while .′ may allocate any free address. It is obvious
that . ⊆ .′.

Theorem 4.4 (Frame Property) Suppose h1 # h, (h1,M1) is nonterminal,
and (h1 ∗ h,M1) .′ (h′2,M2) for some h′2,M2. Then there exists a heap h2 such
that (h1,M1) .′ (h2,M2), h′2 = h2 ∗ h and h2 # h.

Frame Property asserts that a computational set in the big heap h1 ∗ h can
be simulated by a set in the small heap h1, so that the excess portion h is not
touched. It has been known since the original days of separation logic (e.g., [7])
that memory allocation must be nondeterministic for Frame Property to hold.
In turn, Frame Property is the basis on which the soundness of the (Frame)
inference rule rests.

Theorem 4.5 (Progress) Suppose that ` M : {P}-{Q} and that h |= P .
Then either (h,M) is nonterminal, or M is returnx for some term x.

Theorem 4.6 (Subject Reduction) Suppose that ` M1 : {P1}-{Q}, h1 |=
P1 and (h1,M1) .′ (h2,M2). Then there exists an assertion P2 such that `M2 :
{P2}-{Q} and h2 |= P2.

Lemma 4.7 Suppose that x : T and Q : T → HProp. If ` returnx : {P}-{Q},
then P |= Qx.

Corollary 4.8 (Partial Correctness) If ` M1 : {P1}-{Q}, h1 |= P1 and
(h1,M1) .∗ (h2, returnx), where .∗ denotes the reflexive-transitive closure of
., then h2 |= Qx.

It is interesting that Theorem 4.2 is only used in the proof of Progress, while
Frame Property is used in Subject Reduction. Thus, Progress holds for the

11

deterministic allocator. Further, Subject Reduction quantifies over any nonde-
terministic step, including the one done using the freeAddr function. Therefore,
Partial Correctness also holds for the deterministic allocator.

We conclude with a remark about the constructive character of the Progress
and Subject Reduction theorems. The type Term has sort Type because via
returnx a member of Term may contain any Coq object. On the other hand,
the statement about derivability ` M : {P}-{Q} has sort Prop. Therefore, its
proof, which contains the HTT derivation, cannot be used in Coq to compute
things of sort Type, including terms of our programming language.

This is made on purpose to demonstrate precisely where information con-
tained in a typing derivation is used. It turns out that the proof of Progress
proceeds by induction on the term, not on its typing derivation, and the infor-
mation from the assumptions ` M : {P}-{Q} and h |= P is used only to prove
that certain terms are well-typed. When an OCaml program is extracted from
the proof of Progress, these assumptions disappear and the resulting function
converts one program term into another.

In contrast, Subject Reduction theorem can well be nonconstructive, for
example, when classical logic is used. The theorem takes and returns objects
of sort Prop, and the proof proceeds by induction on the HTT derivation. For
example, one assumption may be h1 |= P ′1 ∗∗P ′′1 , and the assertion P2, which is
built by the proof of the theorem, may depend on how h1 is split to satisfy P ′1
and P ′′1 . There may or may not be a way to find how to split h1 because this
depends on the axioms used in a particular verification session. Nevertheless,
even if a derivation includes the rule (∃E) and the existential precondition is
proved nonconstructively, the program term from the next computational step
will be found by the algorithm contained in the proof of the Progress statement.

References

[1] Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and
Ryan Wisnesky. Effective interactive proofs for higher-order imperative pro-
grams. In ICFP ’09: Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming, August–September 2009.

[2] Adam Chlipala et al. Ynot project. http://ynot.cs.harvard.edu/.

[3] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Hoare type theory,
polymorphism and separation. Journal of Functional Programming, 18(5–
6):865–911, 2008.

[4] Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau,
and Lars Birkedal. Ynot: Reasoning with the awkward squad. In ICFP
’08: Proceedings of the 13th ACM SIGPLAN International Conference on
Functional Programming, September 2008.

[5] Rasmus Lerchedahl Petersen, Lars Birkedal, Aleksandar Nanevski, and Greg
Morrisett. A realizability model for impredicative hoare type theory. In 17th

12

http://ynot.cs.harvard.edu/

European Symposium on Programming, ESOP 2008, volume 4960 of Lecture
Notes in Computer Science, pages 337–352. Springer, 2008.

[6] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of the Seventeenth Annual IEEE Symposium on Logic
in Computer Science, pages 55–74. IEEE, 2002.

[7] Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning.
In Mogens Nielsen and Uffe Engberg, editors, Proceedings of the 5th Inter-
national Conference on Foundations of Software Science and Computation
Structures (FOSSACS 2002), volume 2303 of Lecture Notes in Computer
Science, pages 281–335, Grenoble, France, 2002. Springer.

13

	Background and Contributions
	Implementation of Separation Logic
	Heaps
	Modularity
	Separation Logic

	Implementation of HTT
	Ghost Variables and Computational Irrelevance
	Ghost Variables and Deep Embedding
	General Recursion
	Inference Rules

	Type Safety

